
SAND REPORT
SAND2002-1969
Unlimited Release
Printed June/2002 

Fisher Information:  Its Flow, Fusion,
and Coordination

Timothy Berg

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of 
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



2 June 2002

Issued by Sandia National Laboratories, operated for the United
States Department of Energy by Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by
an agency of the United States Government.  Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their
contractors or subcontractors.  The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA  22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov


June 2002 3

SAND2002-1969
Unlimited Release
Printed June 2002

Fisher Information: 
Its Flow, Fusion, and Coordination

Tim Berg 
Microsystems Partnerships

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM  87185-1204

Abstract

The information form of the Kalman filter is used as a device for implementing an
optimal, linear, decentralized algorithm on a decentralized topology.  A systems approach
utilizing design tradeoffs is required to successfully implement an effective data fusion
network with minimal communication.  Combining decentralized results over the past
four decades with practical aspects of nodal network implementation, the final product
provides an important benchmark for functionally decentralized systems designs.
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Introduction

This paper considers the problem of optimal, decentralized estimation— where there are
no central facilities.  Global sensor fusion centers or other central functions represent
single points of catastrophic failure or compromise for a system.  The ability to remove
centralized communications, computation, and memory functions increases fault
tolerance, data throughput, and system security.  Central facilities continue to be used,
however, for several reasons: centralized command structures are simple to understand
and explain to customers, system designers are accustomed to centralized systems, and
many software tools or algorithms for implementing decentralized systems do not yet
exist.  This paper addresses problems of the third type, specifically how system tradeoffs
can be made in implementing decentralized estimation systems for a wide range of
applications.

The application space for decentralized systems may be summarized by Table 1, which
gives a taxonomy according to the critical system functions of communication,
computation, and memory.  The applications include distributed detection (e.g.
distributed Chemical, Biological, and Nuclear non-proliferation), multi-sensor target
tracking (e.g. monitoring of high quantities of accountable materials), and wide area
estimation (e.g. updating the state of a nationwide information system).

The Kalman filter is used as a vehicle for assessing computation, communication and
memory tradeoffs for decentralized estimation.  This paper combines three extensions of
the Kalman filter to produce a distributed implementation.  The three extensions, each
described below, are the decentralized filter topology, the information form of the
Kalman filter, and real world tradeoffs used to implement Kalman filters.  The result is an
optimal, distributed algorithm that runs in parallel on systems of decentralized processors
to accomplish robust, fault tolerant estimation, tracking, state update, and sensor fusion.

The Kalman Filter

The Kalman filter is an algorithm developed by R. E. Kalman which combines state
space theory with recursive filter techniques to produce an optimal, vector space based
tracking method [Kalman1960].   The Kalman filter operates in two stages: prediction
and update, offering a convenient way to update a running computer model with new
sensor data without recalculating all the data that preceded the new input.  The filter
recursively computes both the state and the covariance, though the covariance values
become constant, a point that will be used later.  The prediction stages are given by

)1/1(ˆ)()/(ˆ ���� kkk1kk xFx                                     (1)

and

)1()()1/1()()1/( ������ kkkkkkk T QFPFP                           (2)
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Table 1.  Taxonomy of Application Problems

where )/(ˆ 1kk �x  represents the state estimate x̂  of the true state x  at time k based on
information up to time 1k � .  Similarly,  )1/1(ˆ �� kkx  is the previous time step update.
The prediction model matrix )(kF  transforms the previous time update to a prediction of
the states at the next, future time.  In equation (2), )1/( �kkP  is the covariance prediction
and )1( �kQ is a covariance of a zero mean, Gaussian process noise ))(,(~)( kNk Q0w  of
the true state dynamic equation

)()1()1()( kkkk wxFx ����                                                  (3)

which is unknown but estimated.  Uppercase bold variables represent matrices while
lowercase bold letters represent vectors.   The Kalman filter update equations are given in
this notation as

)()()/(ˆ)}()({
)}/(ˆ)()(){()/(ˆ)/(ˆ

kk1kkkk

1kkkkk1kkkk

zKxHKI
xHzKxx

����

�����

                      (4)

)/()}()({
)}()()()1/({)/( 111

1kkkk

kkkkkkk T

���

���
���

PHKI
HRHPP

                         (5)

Fault Type System Type
Communication

Sensor Net
Internet

Telecom/Cellular
Robot Swarms

Software Agents

Computation
Sensor Fusion

Image Processing
Intelligent Routing
Robot Reasoning

Parallel Computing

Memory
Diskless Computing

Database
Model Building

Web Search
Disk Farms

Communication
Link Loss/Jamming

Bandwidth Drop
Sporadic/Intermittent

Link Compromise

Denial of Service
Man in the Middle

Cell Switching
Quality of Service

Stealth Sensors

MPI node mapping
Router table update 
Agent coordination

Bus Errors
Stranded Robot 

Session Timeout
Process Timeout
Synchronization

Data Loss 
Backup

Computation
Node drop

Floating Point Error
Thread Competition
Adversary Process

Encryption failure
Router Failure

Node Loss
DNS etc. Loss

Node Saturation
Code Paralellization

Grid Loss
Algorithm Design

Synchronization
Server Load

Caching
Buffer Overflow

Memory
Corruption
Bit Flipping

Table Corruption
Compromise

Router Poisoning
DNS Nonresolve
Sensor Spoofing

Buffer Underflow
Data Mining

Algorithm Design
Navigation

Data verity
Lost Disks
Hashing 
Privacy
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where the Kalman Gain is given by

)()()/(
)}()()1/()(){()1/()(
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             (6)

The new terms )(kz and )(kR come from the observation equation representing a noise
corrupted measurement process

                    )()()()( kkkk vxHz ��                                                      (7)

where )(kz is an observation vector, )(kH is the observation model, and )(kv is
measurement noise modeled as a zero mean, uncorrelated sequence:

)()]'()([ ' kkkE kk
T Rvv ��                                                     (8)

where ][�E  is the expectation operator and )(kR is the observation noise matrix such that:

 ))(,(~)( kNk R0v .                                                         (9)

The main assumptions of the Kalman filter are that the dynamics not represented by the
system model and observation model may be treated as zero mean, Gaussian noise.  The
models can be derived from first principles of physics but in practice they are also
derived by removing all structure from system signals until all that is left is zero mean
and Gaussian noise.  The Central Limit Theorem helps explain why, over time, many
non-Gaussian distributions come close to the normal distribution.  The Kalman filter is
thus useful for a surprisingly wide range of linear systems, and many nonlinear
extensions to the theory have also been developed.

On the other hand, the Kalman filter is called a filter because of its noise rejection
properties.  In some applications it is actually more of an averaging “filter,” balancing the
sensor noise against what is not understood about nor represented in the system dynamic
model.  In some cases where the sensor and process model uncertainties are of similar
magnitudes, an averaging filter will perform basically as well as a Kalman filter.  

Notwithstanding, the Kalman filter is a graceful mathematical means wherein recursive
filtering is statistically justifiable as optimal.  It can be derived statistically as a maximum
likelihood estimator, using the expectation operator, by Baye’s Law with appropriate
probability distribution functions, as a weighted least squares estimator using the normal
equations, by minimizing mean squared error or other measures of covariance including
its trace or determinant, and by the geometric arguments of projection theory.  Thus one
of its main uses in this paper is as a measure of optimality in decentralized systems where
optimality can be difficult to define.  For centralized problems, the Kalman filter is the
benchmark against which suboptimal filters may be compared to determine their
performance.  In decentralized estimation, it is often assumed that no optimal linear
solution exists and therefore no benchmark is available or required.  The present results
provide a benchmark for optimality of decentralized estimation for an important class of
problems under the standard Kalman filtering assumptions.  
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Decentralized Kalman Filtering
Decentralized Kalman filtering involves running two or more Kalman filters which share
information.  Since each filter communicates, each physical implementation must add
communication to its capabilities which at a minimum include computation and memory.
Each physical filter implementation is called either a node, agent, or intelligent sensor,
etc.  The way the nodes’ functions are arranged is called its architecture, and it is often
determined by a communication topology.  A common topology, for example, is a
hierarchical one where subprocessors preprocess data and send it to a central fusion
center to be combined.  There are many architecture and topology variations, however.  

Some centralized memory arrangements are called blackboard architectures where all
nodes have access to a shared memory—the blackboard.  Just because the memory is
shared and common to all nodes does not mean it is necessarily central, however, since it
can be duplicated and synchronized between locations.  This creates the synchronization
problem.  Consider also the centralized communications set-ups called broadcast
architectures where all nodes are privy to every communication over a common medium,
e.g. radio or sonar.  Such systems introduce issues such as data time and origin stamping
to keep track of all of it.  If all signals are sent over the same frequency or cable, then
communications are really centralized and bottleneck issues become prominent for high
data rates. The hierarchical architecture mentioned above is really a centralization of
computation, similar to an office computer network with a server feeding desktop
applications to thin clients.  Other common functions that may be centralized or
redundant include power sources, system management, and buffer memory; these also
may represent single point failures.

Returning to the Kalman filtering example, each filter may be represented by subscripting
each state according to the node where it is running.  Thus, there exists for each
subdomain a true substate vector, related to the true state vector as [Willsky1982]

Gaa xUx �                                                                (10)

and each local filter makes its local prediction:

 )1/1(ˆ)()/(ˆ ���� kkk1kk aaa xFx                                            (11)

)1()()1/1()()1/( ������ kkkkkkk a
T
aaaa QFPFP .                          (12)

The question of the optimality of this prediction, the filter’s prior in a statistical sense, is
immediately raised.  The issue is often stated as, “will this local filter produce the same
results as a global, all knowing, optimal filter would?”  This definition of optimality is
incomplete, however.  In practice, a global filter is run and the result is then transformed
to the local subspace and compared to the performance of the local filter.  So the question
actually answered is, “does a local filter produce the same result at the local subspace as a
globally optimal filter transformed to its subspace?”  This is important because it points
to the need to include enough degrees of freedom in the local filter in the first place to
accurately represent the local system dynamics.  Furthermore, the interfaces between
local filters and the global filter, as well as between the local filters themselves must be
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properly defined.  Oftentimes a global filter is decentralized by performing a global
mathematical signal analysis in an attempt to partition the states “naturally” down to
reduced order observers.  While it is intellectually satisfying to hope that a highly
complex system (or the world) could be ordered from the top down, the systems engineer
will better understand the system if it is partitioned from the bottom up with well defined
interfaces.  Furthermore, if the bottom up system design approach is used, the process of
adding new nodes and initializing them into the network is more easily automated.

For example, the nuclear power plant controller wants to know pressures and
temperatures at specific locations because safety control features have been designed into
those locations.  These parameters form natural interfaces between monitored zones since
a specific location’s temperature and pressure must be identical by each node’s
reckoning.  If both nodes are optimal, they will produce the same result, while agreeing
results do not guarantee optimality.  

Mathematically, Sandell [Sandell1978] handled the local to global prediction model
relationship by arguing for a necessary and sufficient dynamic equivalence condition on
the process model

Gaaa FUUF �  (13)

so that the local system is matched to the global model and hopefully designed properly
in the first place.  

Next, the prediction must have good information to start with on which to base the
prediction.  Therefore the previous update needs to have been optimal and the one before
that all the way back to an optimal filter initialization.  

Sandwiched between the required optimal initialization and a dynamically equivalent
prediction model are all the updates in between.  The updates may be divided into two
types:  the local filter update with its own e.g. sensor data, and internodal updates with
other nodes’ data.  The local update is simply a standalone filter without communication:
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where for now it must be remembered that the update is a local update based only on the
information from node a  at time k .  

For the nodes to share information, or for a global or hierarchical fusion center to
globally update the data, requires relationships among the nodes.  All decentralized
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filtering is based on the partitioning of the observation model in [Hashemipur1988],
greatly aided by the assumption of independence of observation noise:
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                                             (17)

so that each of the m nodes takes local measurements )(kaz of the global state vector
according to the nodal observation equation

)()()()( kkkk aaa vxHz �� .                                              (18) 

With noise uncorrelated between partitions, )(1 ka
�R  takes on a block diagonal form

allowing a simple relationship between local and global terms in the second halves of
equations (5) and (15) and similarly for (4) with (15) and (6) with (16):
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Substituting yields the equations for the update at a global fusion center:
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using the definition of Kalman gain and the identity

)1|()|()()( 1
���

� kkkkkk GGGG PPHK1                                  (21)

where 1  is the identity matrix.

Before proceeding, note that there is no qualitative difference between information
originating at the local node versus information arriving from another node.  In fact, there
is no qualitative difference between information from the prior or prediction compared to
the sensor information or the update.  Each of these quantities is orthogonal with respect
to )|(1 kkG

�P .  Multiplying Equation (20) through by )|(1 kkG
�P

�
�

���

����
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T
aGGGG kkkkkkkkkkk
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111 )()()()1|(ˆ)1|()|(ˆ)|( zRHxPxP           (22)

shows a useful structure of information update which, by way of a simple change of
variables, gives the Information filter. 
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The Information Filter

The information filter makes use of the algebraic form of the Kalman filter based on
Fisher information.  Fisher information has superficial similarities to Shannon
information but is an entirely distinct quantity derived by wholly different notions.
Fisher information, used by R. A. Fisher [Fisher1925], relates in its most simple sense to
when equality is achieved in the Cramer-Rao lower bound on estimation error.  In a
scalar form:

12
�Ie                                                                  (23)

where 2e  is the mean squared error in an estimate and I is the Fisher information.  Thus,
the best estimate possible, i.e. the estimate making the best use of the data from a
minimum mean squared error perspective, is attained when 

I
e

1
� .                                                               (24)

For the matrix case of the vector space Kalman filter, the scalar mean squared error
becomes the covariance matrix so that in an optimal filter, the inverse of the covariance
matrix is the Fisher information

IP ���
�1

2

1
e

I .                                                      (25)

Defining an information matrix and an information vector associated with the covariance
matrix and state estimate, respectively:
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                                     (26)

along with the information associated with a measurement )(kaz :
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gives the Information filter update equations from (4) and (22):
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In symbolic form the information filter is )data new()prediction()update( ���

a
aGG jii .

The information filter is used for two reasons: it has an advantageous algebraic form and
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it serves as a bridge to relate decentralized estimation to the broad range of current Fisher
information advances which derive most every law of physics using Fisher information
[Frieden1998].  This is helpful when modeling cooperative systems as obeying analogous
laws of physics.  The information filter is related to the Kalman filter by the matrix
inversion lemma with variable substitutions, and its form is algebraically identical to the
update stage of the filter both locally and when information from other filters is fused in
to a local filter.  Furthermore, the information form of the filter is helpful in deriving the
update at a local node using data from other nodes.  

Implementing Decentralized Optimal Filters

Equations (22) and (28) are global dimension updates at a fusion center assumed to have
all system information.  The easy way to ensure all nodes are globally optimal is to
duplicate a global processing station at each node [Speyer1979], each running the same
global update equation.  If initialized identically, each will arrive at the same, globally
optimal results “independently”.  This is not a scalable approach, however, since it
requires full connectivity with a huge communication overhead.  If the application is a
database, a second, tandem processor makes a nice backup, but a dozen identical
processors creates database compromise vulnerabilities and a synchronization problem.

What is required is distribution of the computational, communication, and memory
requirements to a set of processors specializing in functions.  For some systems, absolute
minimum communication is a requirement.  A local node not running the full state model
should require only the state and observation information relevant to its local state
subspace in order to calculate an update which is globally optimal over that local space.
This requirement drives the communication topology required of the nodal network.
Some nodes will not need to be connected, and some will require only one-way
communications.  A fully decentralized network will have aspects of hierarchy and
autonomy depending on local and regional requirements.

To derive the globally optimal update at a local node, the problem of fusing in
information from another node needs to be solved.  The internodal data may be treated as
though it came from the same node, provided the covariance issues of overlap, differing
data confidence, and transformation of the substate space relationships are accounted for.
The method of accomplishing this is to relate each local state and observation space to a
common space and use the common space to relate them to each other.  For simplicity, all
states will be related to the global state space, though computation can be reduced by
accomplishing this on a regional level.  The complexity of the region needs to be large
enough to describe the nodal interface, but not necessarily of global dimension.  There is
a tradeoff between creating more regions to reduce the local computation, and the
management overhead of keeping track of all the regions and their interface descriptions.  

One way to attack the problem is to derive a local update completely free of global
information including the covariance information, i.e. the Gx̂ and GP terms.  But note that
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by the definition of covariance and the state relationships (10) the local covariance is
related to the global covariance by premultiplication and postmultiplication:

)()1/()()1/( kkkkkk T
aaa UPUP ��� .                                  (29)

This relationship significantly complicates distribution of system resources because it
reflects the physical realities of correlation between nodes that are observing the same
physical phenomena.  As a tradeoff, we can perform the covariance calculations in global
terms by precomputing them.  Since the covariance terms are not data dependent and
stabilize to constant terms, they may be computed offline and stored in local memory.  If
a new node is added, it can supply a new covariance term as part of the initialization
procedure as it comes online.

The state update is more problematic and several approaches have been suggested.  In
[Berg1993], an internodal transformation is suggested based on a projection theory
approach but the internodal transformation turns out to be applicable only to a very
narrow range of situations.  The internodal transformation approach is coopted in
[Mutambara1998] with additional errors.  Willsky [Willsky1983] suggests a scattering
framework using a superposition principle, also employs the information filter form, and
addresses the problem of incomplete local models, but unfortunately assumes a central
fusion center.  Speyer [Speyer1979] states that only a minimum sized vector needs to be
communicated, provided an additional calculation is performed at each node to account
for it being suboptimal.  This theoretical result can be improved on in practice to the
point where only local sized information is transmitted.  There is a much wider range of
practical tradeoffs between computation, communication, and memory in theory as well.

The most straightforward way to derive a filter that can be implemented at every local
filter is to rearrange (22)
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where this time )|(ˆ kkax is not a local update, but an update of all global information
relevant to the node.  It is interesting to note the similarity to the forms in [Frieden1998]
where the intrinsic information variable (I in his notation) is diagonal while the
correlations are accounted for in the extrinsic information (Frieden’s J). The observation
model may be reduced to a local order sized observation model )(kaC [Willsky1982] by
a linear transformation   

 )()()( kkk aaa SCH � .                                                  (31)

That )(kaS  is distinct from )(kaU  reflects the possibility that the filter may be operating
as an observer reconstructing states it does not directly observe, but either obtains
through communication, or calculates using its process model.  The partitions become
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making (30)
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where

)()()()( 1 kkkk bb
T
bb zRCi �

� .                                            (34)

Therefore, only the small, local, data dependent vector need be communicated and it can
be updated directly with most other terms in (33) not data dependent and therefore
precomputable.  All )()|( kkk T

bGa SPU terms could be precomputed and stored to tradeoff
more memory against less processing for increased speed.  Similarly, this approach may
be used at some nodes and not others depending on nodal requirements.  Furthermore, the
prediction that is depicted in global variables need only be perfomed over variables of
local relevance.  It should therefore be a sparse matrix operation and may be dynamically
equivalent to the local prediction with local covariance sized terms under some
circumstances.

Conclusions
Decentralized systems are increasingly important in a widening array of applications
from information systems, sensor networks, cooperative robotics, communications
systems, high performance computing, and power grids.  Such decentralized
implementations do not just benefit from a systems design approach but require it for
their effective functioning.  The Kalman filter is an excellent vehicle for exploring
decentralized system tradeoffs because of its optimality and linearity.  This paper
provides that understandable benchmark and reference framework by developing a
decentralized Kalman filter for a decentralized topology.  Previous efforts have
concentrated on either decentralized filters on centralized or hierarchical topologies or
essentially centralized filters on decentralized topologies.  This implementation assumes
a truly decentralized architecture requiring no central facilities.  Several decentralized
results spanning four decades are brought together to decentralize the filter algorithm,
topology, and services through tradeoffs of computation and memory that minimize
communication.  The result is an optimal, linear filter which needs only to share nodal
dimension information between autonomous nodes.  The results recognize the
Information filter forms, which provide ties to an increasingly rich body of research that
will allow modeling complex information systems using the laws of physics.
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